Quiz 1: Fundamentals of Functions

Problem 1 (5 points). From the list of choices below, identify the equations corresponding to f, g, and h. You do not need to explain your answers.

- $y=\cos x$
- $y=\sin x$ is the equation of f
- $y=\tan x$ is not the equation of g. I intentionally included this as a misleading answer choice, but remember that $\tan (x)$ is periodic!
- $y=x^{3}+x$ is the equation of g
- $y=x^{3}+x^{2}$
- $y=x+4$
- $y=-2 x+4$ is the equation of h

Problem 2 (5 points). Find the domain of

$$
f(x)=\frac{1}{x^{2}-|x|}+\sqrt{4 x^{2}-1}
$$

where $|x|$ denotes the absolute value of x. Is $f(x)$ even, odd, or neither?

Solution: This solution may look long, but the idea isn't that complicated: we just look at the various pieces that f is "built out of" and decide when everything makes sense.
$f(x)$ is defined when both $1 /\left(x^{2}-|x|\right)$ and $\sqrt{4 x^{2}-1}$ are defined. Let's consider these two pieces separately.
For the first expression, its numerator 1 and denominator $x^{2}-|x|$ are defined everywhere, so we just have to worry about when the denominator is equal to 0 . This happens when $x^{2}=|x|$. The solutions to this are $x=-1,0,1$; this is probably most easily seen by drawing a graph. Hence the domain of $1 /\left(x^{2}-|x|\right)$ consists of all real numbers aside from $-1,0$, and 1 .

Now let's look at $\sqrt{4 x^{2}-1}$. The expression $4 x^{2}-1$ is defined everywhere, so we just need to see when $4 x^{2}-1 \geq 0$. We can rewrite this as $x^{2} \geq 1 / 4$. This is equivalent to $|x| \geq 1 / 2$.

So for the whole function $f(x)$ to make sense, we must have $|x| \geq 1 / 2$ and $x \neq-1,0,1$. There are a number of ways you could express this; e.g. the domain of f is

$$
(-\infty,-1) \cup(-1,-1 / 2] \cup[1 / 2,1) \cup(1, \infty) .
$$

Finally, f is even because $f(-x)=f(x)$:

$$
f(-x)=\frac{1}{(-x)^{2}-|-x|}+\sqrt{4(-x)^{2}-1}=\frac{1}{x^{2}-|x|}+\sqrt{4 x^{2}-1}=f(x) .
$$

Problem 3 (5 points). Determine coefficients a, b, c so that the graph of the quadratic $f(x)=a x^{2}+b x+c$ passes through the points $(0,12),(2,0)$, and $(3,0)$.

Solution one: You could do this problem by solving the system of equations

$$
\begin{aligned}
c & =12 \\
4 a+2 b+c & =0 \\
9 a+3 b+c & =0
\end{aligned}
$$

obtained by plugging the three data points into the quadratic. I won't spell out the details here, but the solution is

$$
a=2, b=-10, c=12 .
$$

Solution two: Alternatively, you could solve this by observing that, for any value of s, the graph of $y=s(x-2)(x-3)$ passes through $(2,0)$ and $(3,0)$ (why?). Then use $f(0)=12$ to determine that $s=2$, and so

$$
f(x)=2(x-2)(x-3)=2 x^{2}-10 x+12 .
$$

Only attempt this problem if you have finished all the others. It is not worth any points and it is significantly harder. Determine the range of the function

$$
f(x)=\sec (x)+2 \cos (x) .
$$

Hint: It's a good idea to start by drawing a picture. Then, consider when $-\pi / 2<x<\pi / 2$. On that interval, $\sec (x)$ and $\cos (x)$ are both positive. The following inequality is true:

$$
(\sqrt{\sec (x)}-\sqrt{2} \sqrt{\cos (x)})^{2} \geq 0
$$

Expand the left-hand side.
Solution: $f(x)$ is periodic with period 2π. It suffices to look at how f behaves in a single period, such as $(-\pi / 2,3 \pi / 2)$. We'll look at the interval $(-\pi / 2, \pi / 2)$ first. As suggested in the hint, when x is in this interval we can write

$$
\begin{aligned}
(\sqrt{\sec (x)}-\sqrt{2} \sqrt{\cos (x)})^{2} & \geq 0 \\
\sec (x)-2 \sqrt{2} \sqrt{\sec (x) \cos (x)}+2 \cos (x) & \geq 0 \\
\sec (x)-2 \sqrt{2} \sqrt{1}+2 \cos (x) & \geq 0 \\
\sec (x)+2 \cos (x) & \geq 2 \sqrt{2} .
\end{aligned}
$$

This bound is "tight" in the sense that there is a value of x for which equality holds. It's when $x=\pi / 4$ (check this!). For x in the interval $(-\pi / 2, \pi / 2)$, the function $f(x)$ takes values in $[2 \sqrt{2}, \infty)$.

For x in the interval $(\pi / 2,3 \pi / 2)$, the function $f(x)$ takes values in $(-\infty, 2 \sqrt{2}]$. (This is because $f(x+\pi)=-f(x)$.) So altogether the range is

$$
(-\infty,-2 \sqrt{2}] \cup[2 \sqrt{2}, \infty) .
$$

Once we learn how to differentiate, we'll have a more systematic way of answering questions like this one.

